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Abstract —Loca fractional Fourier analysis is a generalized Fourier analysis in fractal space. The local fractional
calculus is one of useful tools to process the local fractional continuously non-differentiable functions (fractal
functions). Based on the local fractional derivative and integration, the present work is devoted to the theory and
applications of local fractional Fourier analysis in generalized Hilbert space. We investigate the local fractional Fourier
series, the Yang-Fourier transform, the generalized Y ang-Fourier transform, the discrete Yang-Fourier transform and

fast Yang-Fourier transform.
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1. Introduction

Fourier analysis [1-6] is a mathematical method
applied to transform a periodic function with many
applications in physics and engineering. It had been used
to a wider variety of field in the sciences and in
engineering, image and signa processing, containing
electrical engineering, quantum mechanics, neurology,
optics, acoustics, and oceanography, and so on, and after
improved and expanded upon it, its general field was
come to be known as the field of harmonic analysis[7, 8].

In mathematics, in the area of harmonic analysis, the
fractional Fourier transform (FRFT) [9] is a linear
transformation generalizing the Fourier transform. The
FRFT [10-18] can be used to define fractional
convolution, correlation, and other operations, and can
also be further generalized into the linear canonical
transformation (LCT).

However, the above referred results can't process the
non-differentiable time-frequency functions on a fractal
set (also local fractional continuous functions). The
theory of local fractional calculus (also caled fractal
calculus [19-33]) is one of useful tools to handle the
fractal and continuously non-differentiable functions, and
was successfully applied in describing physical
phenomena [34-43]. Local fractional Fourier analysis[44,
45] derived from the local fractional calculus, which is a
generalization of the Fourier analysisin fractal space, has
played an important role in handling non-differentiable
functions.

The aim of this paper is investigated the theory and
applications of the local fractional Fourier analysis. The
organization of this paper is as follows. In section 2, the
preliminary results for the local fractional calculus are
investigated. The theory of local fractional Fourier series
is presented in section 3. Section 4 is devoted to theory of
the Yang-Fourier transform. Theory of the generalized
Y ang-Fourier transform is considered in section 5. The
discrete Yang-Fourier transform is studied in section 6.
The Fast Yang-Fourier transform is considered in section
7. The conclusionisin section 8.

2. Preliminary results
2.1. Local fractional continuity of functions
Definition 1 [30-35]
If thereis

[ (x)— (%)<
With|X—XO| <0 forg,0 >0andg,8 € R. Now

2.2)

f (X) iscalled local fractional continuousat X=X,
denotebyli_)nxl f (x)=f(%,).Then f (X) iscalled

local fractional continuous on the interval (a, b),
denoted by [30-35]
f(x)eC,(ab). (2.2)

Lemma 1[33-36]
Let F be a subset of the real line and be a fractal. If

f :(F,d) —)(Q',d')is a bi-Lipschitz mapping, then

thereisfor constantsp,7 >0 and F c R,

p°H*(F)<H®*(f(F))<t°H®(F) (23
such that for all X, X, € F,
P = [ <[ T ()= T (%) <7 Py —x[".
(2.4)

As adirect result in the condition of Lemma 1, we have
(%)= f (%) <7 =% (25)
such that
|f (x)-f (x2)|<g“ (2.6)

Noticethat o isfractal dimension. Thisresult isdirectly
deduced from fractal geometry.

2.2. Local fractional derivative and integration
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Definition 2 [30-35]
Setting f (X) eC, (a, b), local fractional derivative of

f(X) of order & at X = X, isdefined by

f(a)(xo):d“f () = mAa(f (X)_fa(xo)) (27
o e (x%)
where A”( f(X)—f (%)) =T(1+a) A(f () f ().
For any XE( b) there exists [20-24, 48-50 ]
f("‘)(x) =D, f (x), (2.8)
denoted by
f(x)e D, (a,b). (29

Definition 3 [30-35]

Setting f(X)eCa(a,b), local fractional integral of
f (X) of order o intheinterval [, b] is defined

9T (X)

=r(f;a)J:f<t><dt> &0

joN-1
vy 2 flu)(an)

where At =t —t, . At=max{At,At,At,..| and
[t,t,.] §=00 N1, t, =a,ty =b, isapartition of

the interval [a, b] . ForanyXe (a, b) , there exists [30-
35]

L1 (X) (2.11)
denoted by
f(x)el ™ (ab). (212)
Here, it follows that [30-35]
L Gf(x)=0ifa=b; (219
()= L (%) ifa<h; (2.14)
and
L0 (%)= (%), (2.15)
We notice that we have [30-35]
f(x)eC,(ab). (2.16)

f(x)eD" (ab),or 1,1 (ab).

For their fractal geometrical explanation of local
fractional derivative and integration, we see [30-35].

2.3. Complex number of fractional-order

Definition 4
Fractional -order complex number is defined by [30, 31,
38]

=X"+1y", x,yeR, 0<a <1, (2.17)

71
where its conjugate of complex number shows that
% =x* —i"y” (2.18)
, and where the fractional modulusis derived as
=191 = X" +y** | (2.19)
Definition 5
Complex Mittag-Leffler function in fractal spaceis
defined by [30, 31, 38]
o Zak
E (Z)=) ——— (2.20)
a( ) ér(u ka)
for z e C (complex number set) and0 < ¢ < 1.
The following rules hold [30, 31, 38]:
E (2)E.(2")=E.((a+2)): @2
E(2)E(-2)=E((a-2)) @2
E,(i“2")E,(i"2") = Ea( (z7+2) ) (2.23)

When z* =i*x”
is[30, 31, 39]

, the complex Mittag-Leffler function

E, (i“x“)=cos, x* +i"sin, x* (224
with
XZDzk
Xa k
o ; I'(1+20K)
and

N

sn X' = Z( + F[1+a %+ | ,
forxeRandO < a <1, we havethat [30, 31, 38]
E,(ix)E, (i"y")=E, (i (x+y)") (@29

e, (i"x")E, (") = E, i (x-y)").

2.4. Generalized Hilbert space

and
(2.26)

Definition 6[30, 31, 38, 43, 44]
A generalized Hilbert space is a complete generalized
inner-product space.

Definition 7[30, 31, 38, 43, 44]
A scalar (or dot) product of two T —periodic functions

f(t)andg(t) isdefined by

(f.9), =] f(t)a(t)(dt)" .

Suppose{e“ n} is an orthonormal systemin an inner

(2.27)

product space X . The following results are equivalent
[30, 31, 38, 43, 44]:

(1)span{g”,...| = X ,ie.{e | isabasis

(2) (Pythagorean theorem in fractal space)
The equation
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(2.28)
foral f € X, where 8,“ =<f,q<”‘> ;
(3) (Generalized Pythagor ean theorem in fractal
space)
Generalized equation
(f,9)=> ab" (2.29)
k=1

foral f,ge X, where
8’ =(f.6"), b’ =(g,6) ;

n
@ f= Z a,“g.” with sum convergent in X for all
k=1
feX.
For more details, we see [30, 31, 38, 43, 44].
Here we can take any sequence of T -periodic local

fractional continuous functions ¢, , k =0,1,...that are
[43, 44]
(1) Orthogonal:
:ﬂ@ﬂWﬁxmfﬂMkiy (2.30)
(2) Normalized:
¢k’¢k J- ¢k =1 (231)
(3) Complete: If afunction X(t)ls such that
T o
(% @), = [ x(t) (t)(dt)" =0 (2:32)

forall i, then X(t)=0.

2.5. Local fractional Fourier seriesin generalized
Hilbert space

25.1. Local fractional Fourier series in generalized
Hilbert space

Definition 8[43, 44]
Let {gbk (t)}::1 be a complete, orthonormal set of

functions. Then any T -periodic fractal signal f (t) can
be uniquely represented as an infinite series

t) = gﬁﬁkﬁbk (t)

This is caled the loca fractional Fourier series
representation of f (t) in the generalized Hilbert space.

(2.33)

The scalars ¢, are called the local fractional Fourier
coefficients of f (t).

2.5.2. Local fractional Fourier coefficients

To derive the formula for @, , write [43, 44]

72

(2.34)

=g¢1¢i (t) (1)

and integrate over one period by using the generalized
Pythagorean theorem in fractal space [43, 44]

(f.),
Jo () (1)(ct)’
IO i‘PJ ¢ () (t)(dt)*

(co,(j g, (t

o1 {91.00),

=

(2.35)

()

L 2

I
o

Il
AS)

k
Because the functions ¢, (t) form a complete

orthonormal system, the partid sums of the loca
fractional Fourier series

0=g%@®

convergeto f (t) in the following sense:

| [ 10-Za0) 10~ Tt

(2.36)

k=1

=0

(2.37)
Therefore, we can use the partial sums
N
t)=> o () (2.38)
k=1
to approximate f (t) .
Hence, we have that
[ M) =Y  @o
k=1

The sequence of T -periodic functionsin fractal

space{¢k (t)}:;o defined by

and

(%jzs'na(k“ab"t“),if k>1is ood
a=1",
[%2 o0s, (Kt if k>Liseven

(2.40)

2r
are complete and orthonormal, where @, = T

Another useful complete orthonormal set is furnished
by the Mittag-L effler functions:
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“)k=0,41%2,... 2.41)

@(t):(%jz E, (i“k“myt
where @, = 2—7T
T

3. Local Fractional Fourier Series
3.1. Notations

Definition 9[30, 31, 38, 43, 44]
Local fractional trigonometric Fourier seriesof f (t) is
given by

aO+ZaKsn (Kt )+ZQ0CB (Kat”) (31

i=1
)
Then the local fractional Fourier coefficients can be
computed by
1 a

8= ], T ()",

q:(% ﬂf(t)sina(k“a)o“t“)(dt)“, (32
2 a

b, =(?j J-OT f (t)cos, (k“ayt*)(dt)".

When @,

=1, we get the short form

:ao+iq(sna(k“t“)+il;asa(k“t“)
Then the local fra(I::tlionaI Fourier co;ici ents can be
computed by
1 7 a
=1, (t)(dt)",

2[1

a, :(?j [ £ (t)sin, (ket*)(at)",

2 a

b“:(?J .[OTf( )cos, (k“t*)(dt)".

The Mittag-Leffler functions expression of local
fractional Fourier seriesis given by [30, 31, 38, 43, 44]

ZCE (”'IE‘“) J

:—OO

(3.3
where the local fractional Fourier coefficientsis

1 —mi” (kx)” «
C, _WJ'I f(X)E, (l—a](dx) with

keZ. (34)

73

For local fractional Fourier series (3.4), the weights of
the Mittag-Leffler functions are written in the form [43,

44]
UL*?;f(x)Ea[‘”“'ff‘“)](okf

f [—m ]E{—nﬂira(m“}( &
(3.5)

Above is generalized to caculate loca fractional
Fourier series.

3.2. Propertiesof local fractional Fourier series
We have the following results [30, 31]:

Property 2 (Linearity)

Suppose that local fractional Fourier coefficients of
f(X) and g(X) are f, and g, respectively, then we
has for two constants & and b

af (x)+bg(x) <> af, +bgf, . (3.6)

Property 3(Conjugation)
Suppose that Cn is Fourier coefficients of f (X) . Then
we have

f(x)<>C,. 3.7)
Property 4 (Shift in time)

Suppose that Cn is Fourier coefficients of f (X) . Then
we have

f(x-%) o E, (- (™))C,. @9
Property 5 (Timereversal)
Suppose that Cn is Fourier coefficients of f (X) . Then
we have

f(-x)eC (3.9)

3.3. The basic theorems of local fractional

Fourier series
We have the following results [30, 31]:

Theorem 6 (Local fractional Bessel inequality)
Suppose that f (t) is 27 -periodic, bounded and local

fractional integral on [—71',71’]. If both &, and b, are

Fourier coefficients of f(t) , then there exists the
inequality

%+kzn;(ak2+q2)

. (3.10)

<[ )
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Theorem 7 (Local fractional Riemann
theorem)

Suppose that f (X) is 27 -periodic, bounded and local

-Lebesgue

fractional integral On[—ﬂ',ﬂ'] . Then we have

lim—=—[" f(t)sin, (nt)"(dt)" =0 (3.12)
n»+oo(2ﬂ.) -
and
. 1 T a o
lim f(t)cos, (nt) (dt) =0. (3.12)
fim e 1 (c0s, ()" (@)
Theorem 8

Suppose that f (t) is 27 -periodic, bounded and local

fractional integral on [—71',77.’] . Then we have

ﬂnp;aﬁfuwmizgiﬂ(mf=oww@
r!m(zi)a I, ()msa(znTHtj (dt)” =0, (3.14)
fm = [ 1), 2] e -0 @i
and
lim ( 271)“ fﬂf(t)oosa(znTHtj (dt)” =0. (3.16)
Theorem 9
Suppose that
~—+Zn:(q]cos +bnsina(nx)“),
then we have that "
T, (9=— [ T, (x+1)D,, ())(e)", @17
where
D, (t)
=%+Zn:cosa (nx) (3.19)
k=1
sn (2n+1)x)’
p— 3 2
sin, (Xj
2
Theorem 10

Suppose that f (t) is 27 -periodic, bounded and local

fractional integral On[—ﬂ',ﬂ']. If

74
(1)~ 2+ 3 (a,c0s, (k)" +,sin, (k)"),
2 3
we have
2 o
IO =2 3 (a7 b2). 619
k=0

Theorem 11(Convergence theorem for local fractional
Fourier series)

Supposethat f (t) is 27 -periodic, bounded and local
fractional integral On[—ﬂ',ﬂ.'] . The local fractional series

of f (t) convergesto f (t) ate [—ﬂ,ﬂ] , and

iJri(ak cos, (kt)” +h<sina(kt)“)
2 ia (3.20)
_ f(t+0)+ f(t-0)
- 2
where
:ij f(x (3.21)
71' T
:ia j f(x () (322
ﬂ T
and
Q=ﬂ—1afﬂf(x)sina(nx)“(dt)“. (329)

3.4. Applications of local fractional Fourier series

3.4.1. Applications of local fractional Fourier seriesto
fractal signal

Expand fractal signal X (t)

fractional Fourier series.
Now we find the local fractional Fourier coefficients

2
X

1 ey
== ()
CT(l+a)t™ |z
- 7T (14 20) | -7
=0

=t (-7 <t<7)inloca

(3.24)
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a,
:ﬂ_laj‘”ﬂx(t)cosa(nt)“(dt)a

1 T a a
=—| t“co t) (dt
s J-_” S (n ) ( )

I'(1+a)t*sin, (nt)" |z 1 ¢ o (e

= - t
naﬂ_a - ﬂana J‘fﬂsna(n) (dt)

_T(l+a)t”sin, (nt)" |z +r(1+a)cosa(nt)“ ™

- n“z* - n*z” -7
=0

(3.25)

and

b,

1 n . a o
=—| X(t nt)” (dt

— [ X(t)sin, (m)"(at)

[(l+a)t“cos, () ||z 1 ¢« ¢ e
| Pt )T L o () ()
[ rE+a)trcs, () = ,(L+a)sin, ()" |z
- n“z” - nn® -
2 (L+a)(-)™

n“z* '
(3.26)

Therefore, for — <t < 7 we have local fractional
Fourier series representation of fractal signal
o (20 (L+a)(-1)"™"

X(t)=> sna(nt)“}(a.zn

a a
n=1 n-mw

3.4.2. Applications of local fractional Fourier seriesto
local fractional partial differential equation

Local fractional partial differential equationis
written in the form

o’u o*“u
= k> 3.28
ot* x> (3:28)
with boundary conditions
o“u(0,t o“u(L,t
08 _, 2uLy)
ox” ox”
and
u(x,0) = f(x). (3.29)
Letting U= XT in (2.1) and separating the
variables, we find that
TX ) = k2 X7 (3.30)
Setting each side equal to the constant —A%“, we
find
X 422X =0 (3.31)

and

T 42T =0. (3.32)

75

So that
X =acos, (A"x* )+bsin, (1“x) (3.33)
and
T =cE, (-A*k*t"). (3.34)
A solution isthus given by
o)
() Accs, (¢ ) +Bain (1))
where A=ac,B=bc.
From % =0, we have B = 0 so that
u(x.t)= AE, (-A*Kk*t*)cos, (A“x*). (3:36)
Then fromM =0, we get
ox“*
sin, (A“x*)=0. (3.37)
Thus
u(xt)

= AE, (—/lzakzo‘t“ (me/ L)Z“)cosa ((rmx/ L)“),
m=0,123,....

To satisfy the condition, U ( X, O) =f (X) , we
obtain

(3.38)

u(xt
:%+2AMEU (—ﬂzakzat“ (me/ L)Za)oosa ((mrx/ L)“)
. (339)
Then fromu(x,0) = f (X)we see that
u(xt)
:%+§1:AnEa(—/12“k2“t“(rrn/ L) ocs, (mex/ L)'

. (3.40)
Thus, from local fractional Fourier series we find

A :(%ja IOL f (x)cos, ((rmx/ L)“)(dX)a (341)

and

u(x,t):r]; [ (x)(e)

g@ [ (x)o0s, (e L)) (9

E, (_Az(xkz(xta (rm/ L)Za)wsa ((mer/ L)a)

[e4

(3.42)
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4. The Yang-Fourier Transform in Fractal
Space

4.1. Notations

Let us consider the formulas (3.3) and (3.4), and set

C =F(1—JM“)Cnt.Wehave

Ty

1l [ m ()
f(x)_(2|)“kz_wc“E“(—l‘” J

where itslocal fractional Fourier coefficientsis

Ci = r(lia) .[_ll f(XE, {#a(nx)“}dx)a :

If we define

then we have

a o T “
() (ks k) =7
It is convenient to rewrite

(%)
- o & GE (k) (4K

1 ® rao), o a
ey [ GE (k) (k)
as | — oo and

1 o o )
Ck:r(lm)j—wf(x)Ea(' X'k, ) ()" . (42)
When K * = ©“, from (4.1) and (4.2) this leads to the
following results

(4.1)

f(x)= (2%)0‘]:0,(@ (i"‘x‘”w"‘ )(da))“ (4.3)
and
1

e  IUCLA G CORNEE
(27)" .
I'(l+a)

When 0% = @™ , it follows from (4.1) and

(4.2) that

1 o e (20
f(x):r(lJra)LCkE{l X ma)

and

76

(4.6)

Definition 10 (Yang-Fourier transform in fractal space)
Suppose that f (X) € C, (—o0,00), from (4.4) the
Y ang-Fourier transform, dented by F, { f (X)} = (o),
iswritten in the form [38-43]:
FA (X))
=£5(w)
1 0 ca a a
F(1+a)L°E”‘(_| a"x') £ (X)(X)
where the latter converges.
Definition 11
IfF, { f (X)} =f, (), from (4.3) itsinversion formula
iswritten in the form [38-43]
f(x)
= Fa"l( fro (a))) :
1

“ar [ E (i“ex) £5(e)(de)",x>0

4.7)

(4.8)

42. The basc theorems of
transform

Yang-Fourier

The following results are valid [38-43].

Theorem 12
LetF, { f (X)} =f, (), then we have
1

f(x)=F (5 ().
Theorem 13

Lt ()} = 15 (@) and F, {0(3)} = 05 (@),

and let &, b be two constants. Then we have

F, {af (x)+bg(x)} =aF, { f (x)}+bF, {g(x)}.
(4.10)

(4.9)

Theorem 14
Let F, {f (x)}=f (o). 1f lim f(x)=0, then

[} o0

we have
FATO(0)=i"0"F, {f (0} @)
Asadirect result, repeating this process, when
f(0)=f(0)=...= f*(0)=0
we have
F A ()] =10 F, {f(x)}. @1
Theorem 15

Let F, {f(X)}=1 (@) and lim_1,'f(x) >0,

then we have
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Theorem 16
IfF, { f (X)} =f, “(®),anda>0, then we have

F,{ f(ax)} _ 1 gra (ﬁa’j

a

(4.14)

Theorem 17
IfF, { f (X)} = f, “(®), and C isaconstant, then we
have

F,{f(x-c)}=E,(-i“c’0")F,{f (x)}. 415

Theorem 18
IfF, { f (X)} =f, “(®), and Cis a constant, then we
have

FAT(XE, (% )| = 17 (0-a,). @16

Theorem 19
Lt [ £,(0) = 57 (@) amaF | 1,(9) = 15 ().

then we have

F AR ()* ()} = £ (0) 1557 (0) . (417)

Theorem 20

LetF, { fl(x)} =f7%(»),F, { fz(x)} =75 (o) and
let @, b be two constants, then we have

F’l{af;i" (@)+bf (a))}

= aFa‘l{ fr (a))} + bFa‘l{ fry (a))}
Theorem 21
e (0] = 15 (@) and o {6,00) =155 (o).

If lim fF’”‘(a) =0, then we have

|eo] >0 @

o (@)] ) =it (x). s

(4.18)

Theorem 22
IfF, { f (X)} =f,“(®), and Cis a constant, then for
a>0 we have

Fa—l{ wa,a (aa))} — a_]; f (gj (4.20)

Theorem 23
IfF, { f (X)} = f, “(®), and C isaconstant, then we
have

F A5 (0-0)f =E, (i¢'x) £ (X).

a

(4.21)

77

Theorem 24
IfF, { f (X)} = f, “ (), and Cis a constant, then we
have

10 (e - 1(x-0

o

(4.22)

Theorem 25
It F,{ ()} =% (@) and F, { f,(x)} =5 (o)
, then we have

o[£ (0)x £ ()= f,(x) f,(x). @23

Theorem 26
It lim f,“ (@) =0, then we have

a)‘—)w
FAES (o)) =t F (x). (429
Theorem 27
1tF, {f(X)} = £, (), then

1 o 2 « 1
I(1+a) LJ () ()= (20 .Lo

2

fre (a))| (da)”

[0}

(4.25)
Theorem 28

1F (1 (0} = 15 (0) and F, {93} =67 (o).

then
1 — 1

el RICEEC Ao [ 15 o (o) o)

(4.26)

4.3. Applications of local fractional Fourier
transform

43.1. Application of local fractional Fourier

transform to local fractional ODE
For the local fractional ODE problem [30, 31]
Y (t)+2y(t)=E, (), O<a <1, @427)
Initial data
y(t)|t:0 =0.
Taking local fractional Fourier transform we have
ra _a,F.a F.a
1“0y “(0)+2y “(0)=— )
yCU ( ) yCU ( ) 1+Iawa
Therefore, we have the following identity
1 1
F,a
W)=— - - .
¥ (@) 1+i%0* 2+i“w”
Theinverse local fractional Fourier transform gives
f(x)=E,(-t)-E,(-2t“).

Therefore, we obtain the relation

F(0=E, ()&, (),
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4.3.2. Application of local fractional Fourier

transform to fractal signal

Let anon-periodic signal X (t) be defined by the relation
A, <t<t,;

0,else.

Taking the Y ang-Fourier transforms, we have
X5 (@)

_ ﬁjz X (t)E, (<i“0"x*)(dx)"

(4.28)

A e o

AE, (H%0"x)

1o o

-1"w -t '

(4.29)
Taking into account

E, (i“x*)=cos, X —i“sin, x*,

we get
2Asn ot }
XD () ==——2—2 =2At" sin . »°t,". (4.30)
® a)a aC 0
where
. sin w*t.“
sin,c 0"t =—=—2-
ot

5. The Generalized Yang-Fourier Transform
in Fractal Space

5.1. Notations

Definition12 (Generalized Y ang-Fourier transform)
From (4.6) the generalized Y ang-Fourier transformis
written in the form [30, 31, 41]

FF(3)
~17(0)
1

“T(L+a) [ T(9E.(hxar ) ()

(27)"

I'(1+a)

(5.1)

whereh, = withO<a <1.

Definition13
From (4.5) the inverse formula of the generalized Y ang-
Fourier transform is written in the form [30, 31, 41]

78

(x) (5.2)

gl @ (oo o)

with O<a <1.

_ (2z)
et = )

5.2. The basc theorems of
transform

Yang-Fourier

The following result isvalid [30, 31, 41].

Theorem 29
LetF, { f (X)} = f, “ (), then we have

f(x)=F*(f ().

(5.3)

Theorem 30
L [ F(0) = 15 (0) and F, {9(9)} =05 (@)

and let &, b be two constants. Then we have

F, {af (x)+bg(x)} =aF, { f (x)}+bF, {g(x)}.

(5.4)
Theorem 31
Let F, {f(X)} =1, (o). If ‘I‘im f(X)=0, then
we have
F AT ()] =iheo F {T(0)}. 65
Asadirect result, repeating this process, when
f(0)=f(0)=..= f*¥(0)=0
we have
FAT () =i“Rfo“F, {f(x)}. 69
Theorem 32
Let F,{f(x)}=1"(@) and lim 1, f (x) >0
, then we have
@ 1
Fa{—oolx( )f(x)}:iah)wa Fa{f(X)} (57)

Theorem 33
IfF, { f (X)} =f, “ (), anda>0, then we have

F{f(ax) =ia fFe (Qj

a a

(5.8)

Theorem 34
IfF, { f (X)} =f,“(w), and Cis a constant, then we
have
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F{f(x-c)}=

Theorem 35
IfF, { f (X)} =f, “(®), and Cis a constant, then we
have

FAT (B, (Hhxay )| = 17 (0-ay). (510)

Theorem 36

Lt 1, (0) = 155 (o) andF, { £,()] = 15 (o).

then we have

FAR(X)* ()} = £ (0) 15 (0) . (511)

E, (-i“hc o”)F,{f(X)}.(59

Theorem 37
et F, (1,09} = 15 (). F, { £,(9} = 17 () and

let &, b be two constants, then we have

F )y () +bi)5 (o))

a5 () b (o)

Theorem 38
Let F{f,(X)} =7 () and F,{f,(X)} = 75 ().

If lim fF“( )zO,thenwehave

01>
Fal{[ f P (a))}(“)} =i"hyx*f (x). (513)

Theorem 39
IfF, { f (X)} = f, “ (), and Cis a constant, then for
a>0 we have

1

F gl - f|X]. (51
A (o) = (aj (5.14)
Theorem 40

IfF, { f (X)} =f, “(®), and Cis a constant, then we
have

R (0-0) =E (e ) 1 ()

Theorem 41
IfF, { f (X)} = f, “ (), and Cis a constant, then we
have

FH 15 (0)E, (Hhwc)} = f (x-0). (516)

(5.15)

Theorem 42

it E {£,()) = 5% (@) andF, { £,(x)} = 175 (o),

then we have

AL (0)* 155 (0)]= (0 f2(%). 617

79

Theorem 43
If lim fF“( ):O,thenwehave

CL)‘—)\X)
FAA (o) =it £ (x). 519

Theorem 44
If Fa{f( )}: fF’“( ) then we have

j _HfF" \dw.

Theorem 45

1 F, {1() = 17 (o) F, {0(0)} = 60 (o),

then we have

[ (a0 (e” = 17 ()95 (o) (do)

(5.20)

(5.19)

6. Discrete Yang-Fourier Transform in
Fractal Space

6.1. Notations

Now we determine from our data,

el T oso@
1 e (6.1

~

eyl s @y

for any local fractional continuous function on the natural
widow. This sampling can be used to complete a
corresponding sum approximation for the integration,

2N-1

2 T (1)e(t)(d)”

1 J- 5
I'(l+a) *%At

[ERN
Z
iR

f (kat)p(kat)(At)”

~

6.2
F(1+a) K ( )

r(1+ )z fd(kAt)(At)".

Notice, however, that

Z
Lo

g )

1 M 1 2’\;13 « a
[(1+a) ;fk L“(lﬂx) L; )3 (1() }(At)

1 2’:_1& 1 M 3 .
=r<1+a)@ [r(m);fk%(t)(ﬂ) }b(t)(dt)

where
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1 MAI o
Fra)iie D% OA) =g (kat).
(6.4)
for k =0,1,
So,
1 2N-1

:F(lia) f; m F(lia)rzj‘fk% (t)(At)“}qu(t)(d)“

(6.5)
Suggest that, with the natural window, we use
1 N-1
=———— > f0,(t 6.6
F(1+a)kz=:§ S (1) (60

where f, = f (At)" for k=0,2,---,N -
Now there are two natural choices: Either f defineto

be 0 outside the nature window, or define f~ to be

periodic with period T equalling the length of the natural
window,

T = NAt. (6.7)
Combing with our definition of f on the natural
window, the first choice would be give
1) (6.8)
1+ oc Z km
while the second choice wouI d be give
f(t fo (6.9)
Flra) s

with . = f.

Clearly, the latter isthe more clear choice. That isto
say, suppose that { fo, f,-+-, f_;} isthe Ny order
regular sampling with spacing At of some function f .

The corresponding discrete approximation of f isthe
periodic, regular array

1+a Z fdu (t)  (6.10)

with spacing At index period N , and its coefficients
- | f(Ax)", if k=01-+,N-1.
f = < (4%) (6.12)
f.n, 1N general.
From the Y ang-Fourier transform theory, we then know
F AT (X)) =17" (o)

isalocal fractional continuous, given by

80
s (o)
1 0 v
“Fara) - TOF (o) @)
1 2Nzl
- (1+05)I_At (t)E, (i“et*)(dt)
1 2N- 1Al ~
N —— 2 _ia_ata o
P, ST
1 2N- 1 N-1
(:I_—+(}C)I—At ( ko K km At J
E ( i“o”t” )(dt)
1 N—1f A
- t
F(1+a)kz:; «(4t)
1 2N-1, o )
(mm) 2y O (O () (d) j
1 & ; _ )
B f (At)" E, (-i"0"k* (At
r(1+a)& (M) E, (Hi"ok" (at)")
(6.12)
So, approxi mation of the formula
ey OB (o) (@)
reduces to
N-1
f;v“ (CO) ~ 1 fk(At)a Ea (_iawaka (At)a)

(6.13)
with T = NAt

2
Taking = NA® and ?ﬁ = A in(6.13) implies that

$(n)
- 15(0)

TS o (K)E, (i (2 ) ke ).

(6.14)
In the same manner, if

‘Gt 15(0)(do)’

then we can write
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5 (Mo)(A0)” E, (i1°n (A0)"

(6.15)
with @ = NAw

Taking t = KAt and 2_|_—7T = A in(6.15) implies that

£ (no)(Aa) B, (i (&) K (Aa))

[0}

> 7 (M) (Aa)” E, (i*nf"(at)" k* (A0’

I
|~
i

(M)E, (i (2)" /).
(
6.16)
Combing the formulas (6.14) and (6.16), we have the
following rsults

o0y e e )

(6.17)
and

¢(k):TiNZO¢(n)Ea (ke (2r)" IN¥). 628

Setting F( )= ¢( ) and interchanging K and N,
we get [46, 47]
ZF (| n“k” ( n)“/N"‘) (6.19)
and
Fll)—— L3 i (20)" ik | N
(9= Fgr e 2B (°(2 )
(6.20)

Definition 14 (Discrete Yang-Fourier transfor m)
Suppose that f (n) be a periodic discrete-time fractal
signal with period N . The N -point discrete Yang-
Fourier transform (DYFT) of F(n) is written in the
form [47]

F (k)

= f(n)E, (<" (27) ke IN). 62

81

i“n“k® (2z)"
withW, ™ =E, [%J _Thisiscalled

N -point discrete Y ang-Fourier transform of F ( n) ,
denoted by
f(n)o F(k). (6.22)

Definition 15
transform)

(Inverse discrete  Yang-Fourier

The inverse discrete Y ang-Fourier transform (IDYFT) is
given by isrewritten as [47]

f(n)
L L Se(KE (ieneke (22) N
_l—*(1+a)Nak:O ( )(l(ln (7[) )
1 1 N-1
- F(k
I'(1+a) N* & (kM.
(6.23)
withW, " =E, {%]

Taking into account the relation [47]

E, (i (20)" (n+1)") =, (i* (20)" "),

we deduce that
E{i“(Zn)“n“(ﬂj ]:5{. (20)° ”akaj (6.24)

N N*
foralne Z . Thatisto say,
W (n+N)

1,a

=W,"
and
W k+N) W kn.

N,a

6.2. The basic theorems of discrete Yang-Fourier
transform

The following results are valid [46, 47]:

Theorem 46
N-1
Suppose that F ( ) f (n)\NN ™, then we have
n=0
N-1
f(n)= ( F(kW,, ™. (6.25)
k=0
Theorem 47

Suppose that f (n) be periodic discrete time signals

with period N, then we have [6]
JHN-1

St(=2 (0

(6.26)

Theorem 48
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Suppose that f,(Nn)<«> F, (k) and f,(n) <> F,(k),
then we have [6]

af, (n)+bf,(n) <> aF, (k)+bF, (k). (6.27)
Corollary 49
F(n)e NT(1+a)f(-k). (629
Corollary 50 (Timereversal rulefor DYFT)
f(—n) < F (k). (6.29)
Corollary 51(Conjugation rulefor DYFT)
f(n)o F(-k). (6.30)

Corollary 52(shift in the N -domain rule for
DYFT)

f(n-1) E, (<" (22) K IN“)F (k). ¢

6.31)

Corollary53 (Shift in the K -domain rule for
DYFT)

E, (i(22) kK IN“) f(n) & F(k-1). (632

)

Definition 16(Cyclical convolution)
The cyclica convolution product of two periodic

discrete time signals f(n) and g(n) with periodic

N is the fractal discrete time signa (f *g)(n)
defined by

(f*g)(n)=

pd
-

(6.33)

f(1)g(n-1).

I
o

Theorem 54(Convolution in the N-domain rule for
DYFT)

Let f(n) and g(n) be periodic discrete time signals
with period N . Supposethat f (n) < F (k) and
g(n) <> G(k), then

(fxg)(n) o F(K)G(K). (634

Theorem55 (Convolution in the K-domain rule for
DYFT)

Let f(n) and g(n) be periodic discrete time signals
with period N . Supposethat f (n) > F(k) and
g(n) <> G(k), then

ﬁ%f(n)g(n)H(F*G)(k). (6.35)

Theorem 56 (Paserval theorem for DYFT)

82

Let f(n) and g(n) be periodic discrete time signals
with period N . Supposethat f (n) < F (k) and
g(n) <> G(k), then

gf Wﬁ:r(ya) N°

Corollary 57
Let f (n) and g(n) be periodic discrete time signals

with period N . Supposethat f (n) ~F (k) , then

& 2 1 1 & P
2J00) = oy IO - 67

Theorem 58

Let f (n) and g(n) be periodic discrete time signals
with period N . Suppose that f(n)<—>F(k) and
g(n) <> G(k), then

N-1 N-1

f(MG(n)=2F(k)g(k).

n=0 k=

(6.38)

7. Fast Yang-Fourier Transform

7.1. Fast Yang-Fourier transform of discrete
Yang-Fourier transform

Therelations
[FN ]l—ln,k+1

1 ~(k+D)n
= W (k)

1 - n
ZWWN’Q krWN,a

= [FN ]in'kWN,ain

(7.2)

and
[ FN ]:,k+1

1 W (ke

= Na N,a

= %WN o kr'\NN o "

(7.2)

= [FN ]:,kWN,an

are the component formulas for the Yang-Fourier
transform.

Suppose that {V,,V,,V,,...,Vy 4} is the Ny, order

discrete Yang-Fourier transforms of {Vy,V;,V,.. Vi 4 -

Starting with the component formulas for the discrete
Yang-Fourier  transform, we obtain that, for

n=012,..,N-1,
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Vi
N-1 K
=ZV\(|,0,_( +1)nd
k=0

N-1 N-1
k+ k+1)n
= ZV\(M;( ]-)nvk—‘r ZV\‘I,DI( 1) Vk
k=0 k=0

k-even k—odd

(7.3)

1 (v 2i) M-1 i)
:? ZV\éM,a 2 +§ :U%M,a Vo
j=0 =0
1 (w2 2i) nM-1 4\(2]
:? ZV\éMa A W ZZ\MMa Voja |-
j=0

and we have the following rel atlon

a 1 o
[mk;([ Fog | +W,., [ ]n], (7.4)
where V is the sequence vector corresponding to

MV, V) Ve is the M —th order sequence of

even-index V'S {V,,V,,...Vy,} and V is the

M —th order sequence of odd-index V'S
{Vl,Vg,...,VNfl} .
Here we can deduce that
WM —(M+)
(2
=E, |—1%— | (M+I
[ (T o)
(7.5)
=Ea(—i°‘[2—nj |QJ
M
_WM,a_I
and
M+l
WM,a 2
:Ea(—ia[%) (M +|)“J
(7.6)
:—Ea(—i“[lj |“j
M
_r
:WM,a 2
Hencefor | =0,1,2,...,m—1, we have [48]
\

%@wnv o, ;wan &
= (CRETRNY

and

83

M+

[ )l '\f\/\{n ,a_llv21+lJ (7.8

)

Here, formulas (7.7) and (7.8) contain common
elements that can be computed once for each | and then

used to compute both V, and V,, ., . Hence we can obtain

the total number of computations to find all theV,'s.
That is to say, this process of increasing levels to our
algorithm can be continued to the K™ level provided to

N =2“N, for some integer N, . Moreover, that

integer, N, =27 N will aso be the order of the

discrete Yang-Fourier transforms and inverse discrete

Y ang-Fourier transforms. If N = 2 itisthisfina K™
level agorithm, fully implemented and refined, that is
caled a fast Yang-Fourier transform of the discrete
Y ang-Fourier transforms.

7.2. Fast Yang-Fourier transform of inverse
discrete Yang-Fourier transform

Suppose that {V_l,V_l,...,VNfl_l} is the N,, order

discrete Yang-Fourier transforms of {VO ,Vl eny Vi 171},

starting with the component formulas for the inverse
discrete Yang-Fourier transform, we obtain that, for

n=012,..,N-1,
V—l

—vaaa“”w

1'(1+oc

(7.9)

ZV\G | I<+])n\{< Z\M (k) rv(

1—(1+O( k:O

(Z\M\/Iadzj \éj_l Zv%lladzjﬂ)\éﬁl J

1
1—(1+0¢) (

1

n2j) E n2), -
1—(1+a)( (Z\lea VZ] L l_;’%/I,oc \éj+l J

and we have the following relation

.11 o
[Fwl, :m(zwa ([ngll W [FNvollj’

(7.10)
where V! is the sequence vector corresponding to

{\/({l,\(l,\/z’l,...,\/N_l’l} , Vo' is the M —th order
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sequence of even-index kal 'S

A/ VARV
and V, L is the M —th order sequence of odd-index
71. {V—l V—1 ’VN—l_l}'

Here we can deduce that
W M+

M,a

(7.12)
=E, i“(z—ﬂj (I
M
:WM,aI
and
M+
WM,a 2
ﬂ (04
=E |i*l — | (M +I
IEEANURD
(7.12)

=

S

Hencefor | =0,1,2,...,m—
\/Ifl

_F(lia ZV\(A |l V\{M[ ) ZV\(A IJV2J+1

:ﬁ% [FWE]TWLVW&(Z} [Fins ]

1, we have[48]

(7.13)

-1
VM +H

1 1 (wx [lzjj SN
= ZV\(A,a]VZj W, m,alV2j+1
i=0

T(l+a) (2v)*| 5

_ L e Tow R T

[(1+a) 2

. (7.14)
It is shown that, formulas (7.13) and (7.14) contain
common elements that can also be computed once for

each | and then used to compute both V™" and V,, ., ™.
These can also yield the total number of computations to
find al the V. '

increasing levels to our algorithm of inverse discrete
Y ang-Fourier transforms is similar to that of the discrete
Y ang-Fourier transforms. Taking into account the relation

N =2 it is aso this fina K" level agorithm, fully

S. That is to say, this process of

implemented and refined, that is caled a fast Yang-
Fourier transform of the inverse discrete Yang-Fourier
transforms.

8. Conclusions

In the paper we investigate the theory of local
fractional Fourier analysis, the local fractional Fourier
series, the Yang-Fourier transform, the generalized Y ang-
Fourier transform, the discrete Yang-Fourier transform
and fast Yang-Fourier transform, and some applications
of local fractional Fourier analysis. Our attention is
devoted to the analytical technique of the local fractional
Fourier analysis for treating with fractal problems in a
way accessible to applied scientists and engineers.
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